Generic Methods for S3 class cauphyfit.
# S3 method for class 'cauphyfit'
print(x, digits = max(3, getOption("digits") - 3), ...)
# S3 method for class 'cauphyfit'
vcov(object, ...)
# S3 method for class 'cauphyfit'
logLik(object, ...)
# S3 method for class 'logLik.cauphyfit'
AIC(object, k = 2, ...)
# S3 method for class 'cauphyfit'
AIC(object, k = 2, ...)
# S3 method for class 'cauphyfit'
confint(object, parm, level = 0.95, ...)
# S3 method for class 'cauphyfit'
coef(object, ...)an object of class "phylolm".
number of digits to show in summary method.
further arguments to methods.
an object of class cauphyfit.
numeric, the penalty per parameter to be used; the default k = 2 is the classical AIC.
a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
the confidence level required.
Same value as the associated methods from the stats package:
# Simulate tree and data
set.seed(1289)
phy <- ape::rphylo(20, 0.1, 0)
dat <- rTraitCauchy(n = 1, phy = phy, model = "cauchy",
                    parameters = list(root.value = 10, disp = 0.1))
# Fit the data
fit <- fitCauchy(phy, dat, model = "cauchy", method = "reml")
fit
#> Call:
#> fitCauchy(phy = phy, trait = dat, model = "cauchy", method = "reml")
#> 
#>                 AIC logLik (restricted) 
#>               74.06              -36.03 
#> 
#> Parameter estimate(s) using REML:
#> dispersion: 0.06255127 
# vcov matrix
vcov(fit)
#>              disp
#> disp 0.0003866757
# Approximate confidence intervals
confint(fit)
#> Approximated asymptotic confidence interval using the Hessian.
#>          2.5 %    97.5 %
#> disp 0.0240104 0.1010921
# log likelihood of the fitted object
logLik(fit)
#> 'log Lik.' -36.02821 (df=1)
# AIC of the fitted object
AIC(fit)
#> [1] 74.05642
# coefficients
coef(fit)
#>       disp 
#> 0.06255127